Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests.
نویسندگان
چکیده
Lianas (climbing woody vines) are important structural parasites of tropical trees and may be increasing in abundance in response to global-change drivers. We assessed long-term (-14-year) changes in liana abundance and forest dynamics within 36 1-ha permanent plots spanning -600 km2 of undisturbed rainforest in central Amazonia. Within each plot, we counted each liana stem (> or = 2 cm diameter) and measured its diameter at 1.3 m height, and then used these data to estimate liana aboveground biomass. An initial liana survey was completed in 1997-1999 and then repeated in 2012, using identical methods. Liana abundance in the plots increased by an average of 1.00% +/- 0.88% per year, leading to a highly significant (t = 6.58, df = 35, P < 0.00001) increase in liana stem numbers. Liana biomass rose more slowly over time (0.32% +/- 1.37% per year) and the mean difference between the two sampling intervals was nonsignificant (t = 1.46, df = 35, P = 0.15; paired t tests). Liana size distributions shifted significantly (chi2 = 191, df = 8, P < 0.0001; Chi-square test for independence) between censuses, mainly as a result of a nearly 40% increase in the number of smaller (2-3 cm diameter) lianas, suggesting that lianas recruited rapidly during the study. We used long-term data on rainfall and forest dynamics from our study site to test hypotheses about potential drivers of change in liana communities. Lianas generally increase with rainfall seasonality, but we found no significant trends over time (1997-2012) in five rainfall parameters (total annual rainfall, dry-season rainfall, wet-season rainfall, number of very dry months, CV of monthly rainfall). However, rates of tree mortality and recruitment have increased significantly over time in our plots, and general linear mixed-effect models suggested that lianas were more abundant at sites with higher tree mortality and flatter topography. Rising concentrations of atmospheric CO2, which may stimulate liana growth, might also have promoted liana increases. Our findings clearly support the view that lianas are increasing in abundance in old-growth tropical forests, possibly in response to accelerating forest dynamics and rising CO2 concentrations. The aboveground biomass of trees was lowest in plots with abundant lianas, suggesting that lianas could reduce forest carbon storage and potentially alter forest dynamics if they continue to proliferate.
منابع مشابه
Apparent environmental synergism drives the dynamics of Amazonian forest fragments
Many contemporary ecosystems are likely to be affected by multiple environmental drivers, complicating efforts to predict future changes in those ecosystems. We studied long-term changes (1980–2012) in forest dynamics and liana (woody vine) abundance and biomass in fragmented and intact forests of the central Amazon. We did so by contrasting trends in 33 permanent 1-ha plots near forest edges (...
متن کاملIncreasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms.
Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxe...
متن کاملCarbon stocks in tropical forests decrease with liana density.
Tropical forests are experiencing structural changes that may reduce carbon storage potential. The recent increase in liana abundance and biomass is one such potential change. Lianas account for approximately 25 per cent of woody stems and may have a strong impact on tree dynamics because severe liana infestation reduces tree growth and increases tree mortality. Based on forest inventory data f...
متن کاملREV I EW AND SYNTHES I S Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms
Stefan A. Schnitzer* and Frans Bongers University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, Department of Biological Sciences, PO Box 413, 53201, USA Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama Wageningen University, Centre for Ecosystem Studies, PO Box 47, 6700 AA Wageningen, The Netherlands *Correspondence: E-mail: [email protected] Abstract Tropical...
متن کاملShort and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest
Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecology
دوره 95 6 شماره
صفحات -
تاریخ انتشار 2014